1,819 research outputs found

    Managing Growth: Best Practices of Family-Owned Businesses

    Get PDF
    Family-owned businesses represent the majority of business in the United States. As consumers and employees, we are compelled to their sense of trustworthiness that all too often disappears in the business world. Our economy depends on the success of family-owned businesses, but only one third of these organizations successfully transition to the second generation and only one in ten survive to the third generation. While a series of best practices attempt to prescribe solutions their challenges, these practices fail to account for the various types of family-owned businesses. More specifically, many types of family-owned businesses exist as evident by specific transitions in terms of ownership, family and business. Therefore, the study of best practices in family firms must consider the timing of implementation. This study analyzes three family-owned businesses that successfully transitioned from start-up businesses owned by a single controlling owner ready to give up control to an expanding business owned by a sibling partnership with young children. From this analysis of a specific type of family-owned business, six common practices emerged

    Nonequilibrium quantum phase transition in itinerant electron systems

    Full text link
    We study the effect of the voltage bias on the ferromagnetic phase transition in a one-dimensional itinerant electron system. The applied voltage drives the system into a nonequilibrium steady state with a non-zero electric current. The bias changes the universality class of the second order ferromagnetic transition. While the equilibrium transition belongs to the universality class of the uniaxial ferroelectric, we find the mean-field behavior near the nonequilibrium critical point.Comment: Final version as accepted to Phys. Rev. Let

    A unified framework for the Kondo problem and for an impurity in a Luttinger liquid

    Full text link
    We develop a unified theoretical framework for the anisotropic Kondo model and the boundary sine-Gordon model. They are both boundary integrable quantum field theories with a quantum-group spin at the boundary which takes values, respectively, in standard or cyclic representations of the quantum group SU(2)qSU(2)_q. This unification is powerful, and allows us to find new results for both models. For the anisotropic Kondo problem, we find exact expressions (in the presence of a magnetic field) for all the coefficients in the ``Anderson-Yuval'' perturbative expansion. Our expressions hold initially in the very anisotropic regime, but we show how to continue them beyond the Toulouse point all the way to the isotropic point using an analog of dimensional regularization. For the boundary sine-Gordon model, which describes an impurity in a Luttinger liquid, we find the non-equilibrium conductance for all values of the Luttinger coupling.Comment: 36 pages (22 in double-page format), 7 figures in uuencoded file, uses harvmac and epsf macro

    Tyr25, Tyr58 and Trp133 of Escherichia coli bacterioferritin transfer electrons between iron in the central cavity and the ferroxidase centre

    Get PDF
    Ferritins are 24meric proteins that overcome problems of toxicity, insolubility and poor bioavailability of iron in all types of cells by storing it in the form of a ferric mineral within their central cavities. In the bacterioferritin (BFR) from Escherichia coli iron mineralization kinetics have been shown to be dependent on an intra-subunit catalytic diiron cofactor site (the ferroxidase centre), three closely located aromatic residues and an inner surface iron site. One of the aromatic residues, Tyr25, is the site of formation of a transient radical, but the roles of the other two residues, Tyr58 and Trp133, are unknown. Here we show that these residues are important for the rates of formation and decay of the Tyr25 radical and decay of a secondary radical observed during Tyr25 radical decay. The data support a mechanism in which these aromatic residues function in electron transfer from the inner surface site to the ferroxidase centre

    Three aromatic residues are required for electron transfer during iron mineralization in Bacterioferritin

    Get PDF
    Ferritins are iron storage proteins that overcome problems of toxicity and poor bioavailability of iron by catalysing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe3+ site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe3+ into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe2+ oxidation in the cavity. Here we demonstrate that EcBFR mineralization depends on three near-diiron site aromatic residues, Tyr25, Tyr58 and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe2+ oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2

    Ferritins: furnishing proteins with iron

    Get PDF
    Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins

    Quantitative and Qualitative Urinary Cellular Patterns Correlate with Progression of Murine Glomerulonephritis

    Get PDF
    The kidney is a nonregenerative organ composed of numerous functional nephrons and collecting ducts (CDs). Glomerular and tubulointerstitial damages decrease the number of functional nephrons and cause anatomical and physiological alterations resulting in renal dysfunction. It has recently been reported that nephron constituent cells are dropped into the urine in several pathological conditions associated with renal functional deterioration. We investigated the quantitative and qualitative urinary cellular patterns in a murine glomerulonephritis model and elucidated the correlation between cellular patterns and renal pathology

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    Prophylactic Embolization of the Cystic Artery Before Radioembolization: Feasibility, Safety, and Outcomes

    Get PDF
    PurposeTo evaluate the safety and efficacy of two different methods of proximal cystic artery embolization in patients undergoing yttrium-90 radioembolization.Materials and methodsForty-six patients had cystic artery embolization performed immediately before yttrium-90 radioembolization, either by using Gelfoam pledgets (n = 35) or coils (n = 11). Clinical symptomatology during the admission and angiographic findings at 1-month follow-up were retrospectively reviewed. Rates of collateralization or recanalization of the cystic artery were compared, as well as the frequency of postprocedural abdominal pain and need for cholecystectomy.ResultsTechnical success was achieved in all patients, and there were no procedural complications related to cystic artery embolization. Of the 11 coil-embolized patients, 5 (45%) demonstrated collateralization of the cystic artery at 1 month, and 1 (9%) demonstrated recanalization of the cystic artery. Of the 35 Gelfoam-embolized cases, 2 (6%) had collateralized at 1 month, and 14 (40%) had recanalized. Two patients (one from each group) had self-limited right upper quadrant pain after the procedure, and one patient in the coil embolization group required cholecystectomy.ConclusionProximal cystic artery embolization is safe and feasible and may be performed during liver-directed embolotherapy to minimize the exposure of the gallbladder to particulate, chemoembolic, or radioembolic agents

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • 

    corecore